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and

Thomas H. Pulliam‡
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A Newton–Krylov algorithm is presented for the aerodynamic optimization of single-
and multi-element airfoil configurations. The flow is governed by the compressible
Navier–Stokes equations in conjunction with a one-equation turbulence model. The
preconditioned generalized minimum residual method is applied to solve the discrete-
adjoint equation, leading to a fast computation of accurate objective function gradients.
Optimization constraints are enforced through a penalty formulation, and the resulting
unconstrained problem is solved via a quasi-Newton method. Design examples include
lift-enhancement and multi-point lift-constrained drag minimization problems. Further-
more, the new algorithm is used to compute a Pareto front for a multi-objective problem,
and the results are validated using a genetic algorithm. Overall, the new algorithm pro-
vides an efficient and robust approach for addressing the issues of complex aerodynamic
design.

Introduction

CURRENT algorithms for the solution of the
two-dimensional Navier–Stokes equations pro-

vide reasonable predictions of aerodynamic perfor-
mance for complex airfoil geometries.1 Although still
a subject of research, the solvers are becoming accu-
rate, robust, and computationally inexpensive. For
the solution of the aerodynamic shape optimization
problem, the validated solvers are typically combined
with numerical optimization methods, for example
gradient-based methods and search methods. Perhaps
the most popular approach for the computation of the
objective function gradient is the adjoint method,2–7

since its cost is virtually independent of the number
of design variables. Search methods, such as genetic
algorithms,8–10 are not as efficient as gradient-based
methods; however, they do not require the calcula-
tion of the gradient and they may be advantageous for
complex, non-smooth, multi-objective problems.

A classic aerodynamic application of numerical opti-
mization methods is the design of cruise configurations
for transonic flow,11–13 and recently, for supersonic
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flow.14,15 Furthermore, the application of these meth-
ods to the design of high-lift configurations is also
an active area of research.16–20 An efficient high-lift
configuration can significantly improve the aerody-
namic performance of an aircraft, as well as provide
weight savings and reductions in mechanical complex-
ity.21 Therefore, in order to address all aspects of
aerodynamic design, a practical algorithm requires
effective capabilities for optimization using multiple
objectives, which may include multidisciplinary inter-
actions,22 and multiple operating points.

A well-known approach for solving multi-point and
multi-objective problems is the weighted-sum method.
Detailed examples of this method for the multi-point
design of cruise configurations are provided by Drela.23

The main shortcoming of this method is the selec-
tion of appropriate design points and their associated
weights. Huyse and Lewis24 recently introduced a
promising formulation based on a statistical approach
that avoids this difficulty.

In Ref. 25, we presented an accurate and efficient
algorithm for the calculation of the gradient via the
discrete-adjoint approach. The adjoint equation is
solved using the preconditioned generalized minimum
residual (GMRES) Krylov subspace method.26 Fur-
thermore, the same preconditioned GMRES method
is also used within a Newton–Krylov flow solver for
fast solution of the flowfield equations. Overall, the
gradient is obtained in just one-fifth to one-half of the
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time required for a warm-started flow solution.
The objectives of this paper are to extend and apply

the Newton–Krylov algorithm presented in Ref. 25 to
the following three areas of aerodynamic design:

1. Optimization of high-lift configurations

2. Multi-objective optimization

3. Multi-point optimization

Factors under consideration include efficiency of the
optimization, design robustness, global and local min-
ima, and the computation of Pareto fronts. A genetic
algorithm, presented in Ref. 10, is used to validate the
multi-objective results.

Problem Formulation
The aerodynamic shape optimization problem con-

sists of determining values of design variables X, such
that the objective function J is minimized

min
X

J (X,Q) (1)

subject to constraint equations Cj :

Cj(X, Q) ≤ 0 j = 1, . . . , Nc (2)

where the vector Q denotes the conservative flowfield
variables and Nc denotes the number of constraint
equations. The flowfield variables are forced to satisfy
the governing flowfield equations, F , within a feasible
region of the design space Ω:

F(X,Q) = 0 ∀ X ∈ Ω (3)

which implicitly defines Q = f(X).
For the examples under consideration here, the ob-

jective function is given by

J =





ωL

(
1− CL

C∗L

)2

+ ωD

(
1− CD

C∗D

)2

if CD > C∗D

ωL

(
1− CL

C∗L

)2

otherwise

(4)
where C∗D and C∗L represent the target drag and lift
coefficients, respectively. The weights ωD and ωL are
user specified constants. This objective can be used for
both lift-enhancement and lift-constrained drag mini-
mization problems. The weighted-sum method is used
for multi-point optimization problems:

Jm =
Nm∑

i=1

wi Ji (5)

where Nm denotes the number of design points (typ-
ically Mach numbers), and wi represents a user as-
signed weight to each design point.

The design variables are based on a B-spline param-
eterization25,27 of the airfoil. An example is shown in
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Fig. 1 B-spline curves and flap translation design
variables
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Fig. 2 Definition of gap and overlap distances

Fig. 1, where a B-spline curve is fitted over the up-
per surface of the main element, and also the upper
surface of the flap for the NLR 7301 configuration.28

The vertical coordinates of the B-spline control points
are used as design variables. Depending on the prob-
lem of interest, additional design variables may include
the angle of attack, and the horizontal and vertical
translation associated with each high-lift element in
multi-element configurations, labeled as Fx and Fy in
Fig. 1. The horizontal and vertical translation design
variables control the gap and overlap distances in the
slot region of the airfoil, as defined in Fig. 2.

The constraint equations, Eq. 2, represent airfoil
thickness constraints that are used to ensure feasible
designs. The constraints are given by

h∗(zj)− h(zj) ≤ 0 (6)

where h∗(zj) represents the minimum allowable thick-
ness at location zj expressed as a fraction of the air-
foil’s chord. For multi-element configurations, it is also
necessary to constrain the gap and overlap distances.
These constraints are required in order to prevent col-
lisions among the elements and to ensure a reasonable
computational grid.

The governing flow equations are the compressible
two-dimensional thin-layer Navier–Stokes equations in
generalized coordinates:

∂Ê(X, Q̂)
∂ξ

+
∂F̂ (X, Q̂)

∂η
= Re−1 ∂Ŝ(X, Q̂)

∂η
(7)

where Q̂ = J−1Q = J−1[ρ, ρu, ρv, e]T is the vector of
conservative dependent state variables, ξ and η are
the streamwise and normal generalized coordinates,
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respectively, and J is the Jacobian of the coordinate
transformation from Cartesian coordinates. Vectors Ê
and F̂ represent the convective flux vectors, the vis-
cous flux vector is given by Ŝ, and Re denotes the
Reynolds number. Sutherland’s law is used to de-
termine the laminar viscosity. The equations are in
non-dimensional form. For further details, see Ref. 29.
The turbulent viscosity is modeled with the Spalart–
Allmaras turbulence model.30 All cases considered in
this study are assumed to be fully turbulent, and there-
fore, the laminar-turbulent trip terms are not used.

Numerical Method
The aerodynamic shape optimization problem de-

fined by Eqs. 1–3 is cast as an unconstrained problem.
This is accomplished by lifting the side constraints,
Eq. 2, into the objective function J using a penalty
method. Furthermore, the constraint imposed by the
flowfield equations, Eq. 3, is satisfied at every point
within the feasible design space, and consequently
these equations do not explicitly appear in the for-
mulation of the optimization problem.

The unconstrained problem is solved using the
BFGS quasi-Newton method in conjunction with a
backtracking line search.25,31 At each step of the line
search, the objective function value and gradient are
required in order to construct a local cubic interpolant.
Note that the optimization problem is based on the
discrete form of the flowfield equations. Using the
discrete approach, we expect the gradient to vanish
at the optimum solution. In the following sections,
we present the formulation for the penalized objective
function, as well as the algorithms used for the flow-
field evaluation (objective function value), the gradient
evaluation, and the grid-perturbation strategy.

Objective with Constraints

A penalty method is used to combine the objective
function with the constraint equations. For example,
the formulation for the thickness constraints is given
by

J = JO + ωT

Nc∑

j=1

Cj (8)

where JO refers to Eq. 4 and ωT is a user specified
constant. The constraint equations Cj , based on Eq. 6,
are cast using a quadratic penalty term:

Cj =
{

[1− h(zj)/h∗(zj)]
2 if h(zj) < h∗(zj)

0 otherwise
(9)

A similar formulation is used to enforce the lower and
upper bounds for the gap and overlap distances.

Flowfield Evaluation

The spatial discretization of the flowfield equations,
Eq. 7, is the same as that used in ARC2D29 and TOR-
NADO32 for multi-block H-topology grids. The dis-
cretization consists of second-order centered-difference

operators with second- and fourth-difference scalar ar-
tificial dissipation. The Spalart–Allmaras turbulence
model is discretized as described in Refs. 30 and 33.
Overall, the spatial discretization leads to a nonlinear
system of equations:

R(X, Q̂) = 0 (10)

where Q̂ = J−1Q = J−1[ρ, ρu, ρv, e, ν̃]T is the new
vector of conservative dependent state variables, and
the turbulence model equation is scaled by J−1. On
multi-block grids, the block interfaces are overlapped
in the streamwise direction and averaged in the normal
direction. Two columns of halo points are used at the
streamwise block interfaces. Although R is written as
a function of the design variables, we emphasize that
during a flowfield solution the design variables, and
consequently the computational grid, are constants.

Eq. 10 is solved in a fully-coupled manner, where
convergence to steady state is achieved using the pre-
conditioned GMRES algorithm in conjunction with
an inexact-Newton strategy.25,34 The main compo-
nents include matrix-free GMRES(40) and a block-fill
incomplete LU (BFILU) preconditioner. The matrix-
vector products required at each GMRES iteration
are formed with first-order finite-differences. Right
preconditioning is used, and the preconditioner is
based on an approximate-flow-Jacobian matrix. The
level of fill for most cases is 2 [BFILU(2)], but diffi-
cult multi-element cases may require BFILU(4). The
approximate-factorization algorithm of ARC2D in di-
agonal form29,32 in conjunction with a subiteration
scheme30 for the turbulence model equation is used
to reduce the initial residual by three orders of mag-
nitude in order to avoid Newton startup problems.

The approximate-flow-Jacobian matrix used for the
preconditioner is identical to the flow-Jacobian ma-
trix, ∂R/∂Q, except for the treatment of the artificial-
dissipation coefficients.25 Hence, the preconditioner
contains the contributions from all components of the
residual vector, namely inviscid and viscous fluxes,
boundary conditions, block interfaces, and the tur-
bulence model. The artificial-dissipation coefficients,
which include the spectral radius and the pressure
switch, are assumed to be constant with respect to the
flowfield variables. Furthermore, the preconditioning
matrix is formed with only second-difference dissipa-
tion, but the second-difference coefficient is combined
with the fourth-difference coefficient as follows,

d
(2)
l = d(2)

r + φd(4)
r (11)

where the subscript r denotes the contribution from
the right-hand side, and the subscript l denotes the
resulting left-hand side value used in forming the pre-
conditioner. This modification does not affect the
steady-state solution. Fast convergence is obtained
with the value of φ set to 6.0, which has been deter-
mined through numerical experiments.
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Eq. 11 improves the diagonal dominance of the pre-
conditioning matrix and reduces the work and storage
requirements of the incomplete factorization. This
approach is similar to the ‘diagonal shift’ strategy
suggested by Chow and Saad.35 The present precon-
ditioning matrix is a compromise between a precon-
ditioner based on a first-order upwind discretization
of the flowfield equations and a preconditioner based
on the actual second-order discretization. This novel
‘intermediate’ preconditioner is significantly more ef-
fective than either of these more commonly used ap-
proaches.

Gradient Evaluation

Using the discrete-adjoint method, the expres-
sion for the gradient, G, of the objective function,
J [X,Q(X)], is given by

G =
dJ
dX

=
∂J
∂X

− ψT ∂R

∂X
(12)

where we reduce the vector of design variables, X, to
a scalar in order to clearly distinguish between par-
tial and total derivatives. For problems with multiple
design variables, it may be helpful to note that G and
∂J /∂X are [1×ND] row vectors, ψ is a [NF×1] column
vector, and ∂R/∂X is a [NF ×ND] matrix, where ND

represents the number of design variables and NF rep-
resents the number of flowfield variables. We assume
that the implicit function Q(X) defined by Eq. 10 is
sufficiently smooth even in the presence of flow discon-
tinuities such as shock waves.36–38

The vector ψ represents adjoint variables, which are
given by the adjoint equation:

∂R

∂Q

T

ψ =
∂J
∂Q

T

(13)

This is a large, sparse, linear system of equations that
is independent of the design variables. The GMRES
strategy from the flow solver is adopted to solve the
adjoint equation. Fast solutions are obtained with
GMRES(85) and for the preconditioning matrix we
use BFILU(6) and φ = 3.0. Multi-element airfoil cases
with complex flowfields may require φ = 6.0, which im-
proves the robustness of the adjoint solver. Due to the
transpose on the left-hand-side of Eq. 13, the matrix-
free approach used in the flow solver is not possible
for the adjoint equation. The flow-Jacobian matrix
is stored explicitly, where we include the contribution
from the spectral radius, but we treat the pressure
switch associated with the artificial dissipation scheme
as a constant.

The remaining terms in Eqs. 12 and 13, namely the
objective function sensitivities ∂J /∂X and ∂J /∂Q,
as well as the residual sensitivity ∂R/∂X, are evalu-
ated using centered differences. The use of centered
differences for the evaluation of the partial derivative
terms is not computationally expensive. For example,

the centered-difference formula for the residual sensi-
tivities is given by

∂R

∂X i
=

R(X + hei, Q)−R (X − hei, Q)
2h

(14)

where
h = max

(
ε · |Xi|, 1× 10−8

)
(15)

and i = 1, . . . , ND. The ith unit vector is denoted by
ei, and a typical value of ε is 1×10−5. It is important to
realize that Eq. 14 involves two evaluations of only the
residual vector per design variable and not two flow-
field solutions. Note that the evaluation of residual
sensitivities includes the evaluation of grid sensitivi-
ties, since the design variables do not explicitly appear
in the residual equations except for the angle of attack
design variable.

Grid-Movement Strategy

As the shape and position of an airfoil evolve dur-
ing the optimization process, the location of the grid
nodes is adjusted from the baseline configuration to
conform to the new configuration. In Ref. 25, we use
an algebraic grid-perturbation strategy that preserves
the distance to the outer boundary and relocates the
grid nodes in the normal direction proportional to the
distance from the airfoil boundary. When the opti-
mization problem involves the horizontal and vertical
translation of a slat or a flap, the use of this strategy
can result in significantly skewed grid cells near the
boundary.

In order to improve the quality of the modified
multi-block grids, we present a new grid-perturbation
strategy given by

ynew
k = yold

k +
∆y

2
[1 + cos (πSk)] (16)

where ∆y represents the airfoil shape change. Sk is
the normalized arclength distance given by

Sk =
1
Lg

k∑

i=2

Li k = 2, . . . , kmax − 1 (17)

where S1 = 0, Li is the length of a segment between
nodes k and k− 1, and Lg is the grid-line length from
the body to the outer boundary.

Results and Discussion
Before presenting aerodynamic design examples, we

carefully validate the performance of the flow solver
and the gradient computation algorithm. C-topology
grids for single-element configurations consist of 257×
57 nodes, where the distance to the outer boundary
is 24 chords, the off-wall spacing is 2 × 10−6 chords,
the leading-edge clustering is 5× 10−4 chords and the
trailing-edge clustering is 2× 10−3 chords. For multi-
element configurations, the H-topology grids contain
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Fig. 3 Flow-solver performance

approximately 31,000 nodes. The off-wall spacing is
2 × 10−6c, the distance to the outer boundary is 12c,
the spacing at the grid stagnation points is 2× 10−5c,
and the trailing-edge clustering is 2 × 10−3c. The re-
ported CPU times are obtained on a 667 MHz Alpha
21264 processor (SPECfp 2000 rating of 562 peak).

Validation

Flow-Solver Performance
A fast solution of the flowfield equations is a critical

component of an effective design algorithm, since an
evaluation of the objective function is required at each
iteration of the optimizer. The performance of the flow
solver is examined for the NLR 7301 configuration at
M∞ = 0.25, α = 8◦ and Re = 2.51 × 106. Fig. 3
shows that the Newton–Krylov flow solver (denoted as
NK) is approximately two to three times faster than
the approximate-factorization flow solver (denoted as
AF). For many cases, this speed-up can be even larger.
Initially, the convergence rate of both flow solvers is
identical, since approximate-factorization is used as a
startup procedure for the Newton–Krylov flow solver.

One of the main difficulties associated with New-
ton’s method is the startup procedure. The Newton–
Krylov flow solver is particularly well suited for the
design problem since once we obtain the solution for
the initial airfoil shape, we warm-start the remain-
ing flow solves. If the stepsizes during the line-search
procedure are sufficiently small, the startup procedure
using approximate factorization is not necessary. The
warm-started flow solves typically converge in 2/3 of
the original flow solve time.

Accuracy and Efficiency of Gradient Computation
Finite-difference gradients provide a benchmark

that is used to establish the accuracy of the gradient
computation using the adjoint method. A subsonic

Table 1 Gradient accuracy

Design Finite Adjoint
Variable Difference (% Diff.)a

5M -0.01228 0.02
4F -0.08533 -0.19
Fx -0.02591 0.06
Fy -0.03363 -0.05

a % Diff = (G − GFD)/GFD × 100

lift-enhancement problem for the NLR 7301 configu-
ration is considered. During the computation of the
finite-difference gradient, the flowfield solution is con-
verged 14 orders of magnitude. The adjoint equation
is converged 8 orders of magnitude.

The freestream conditions are M∞ = 0.25, α = 4◦,
and Re = 2.51 × 106. We compute the gradient of
the objective function, Eq. 4, with respect to control
point 5 on the main airfoil (denoted as 5M), control
point 4 on the flap (denoted as 4F), and the horizontal
and vertical flap displacements (denoted as Fx and Fy,
respectively), see Fig. 1. The target drag coefficient,
C∗D, is set equal to the initial drag coefficient, while
the target lift coefficient, C∗L, is set equal to 2.2, which
represents a 2.5% increase from the initial value. The
values of ωL and ωD in Eq. 4 are both set to 1.0 and
there are no side constraints. Table 1 shows that there
is an excellent agreement between the finite-difference
and adjoint gradients.

Fig. 4 compares the convergence history of the ad-
joint and flowfield equations with respect to CPU time.
The time for the formation of the preconditioning ma-
trices is included in Fig. 4.1 It is necessary to converge
the adjoint equation only three orders of magnitude in
order to obtain gradients of sufficient accuracy.39–41

This level of convergence is achieved in approximately
45 seconds, as shown in Fig. 4. For the flowfield equa-
tions, we typically reduce the residual by ten orders
of magnitude in order to prevent stalling of the line
searches once the solution is close to the optimum.
This convergence level is achieved in 245 seconds, and
consequently, the gradient is obtained in less than one-
fifth of the flow solve time.

Design Examples

Optimization of High-Lift Configurations
The first design example demonstrates the perfor-

mance of the Newton–Krylov algorithm for the opti-
mization of complex high-lift aerodynamic configura-
tions. This optimization is based on a single operating
point and objective function, but we consider the is-
sue of local versus global minima. The goal is to

1In Fig. 4, the ‘flat step’ in the convergence of the flow solver
after a three order-of-magnitude decrease in the residual indi-
cates the formation time of the preconditioner. For the adjoint
equation, this time is indicated at the start of the convergence
history.
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determine the optimal gap and overlap distances for
the NLR 7301 configuration, such that the modified
configuration achieves a higher lift coefficient while
maintaining the same (or lower) drag coefficient as the
original configuration. The freestream conditions are
M∞= 0.25, α = 4◦, and Re = 2.51× 106. The initial
values of CL and CD are 2.145 and 0.04720, respec-
tively. The objective function is given by Eq. 4, where
we set C∗L = 2.180 and C∗D equal to the initial drag
coefficient. The weights ωL and ωD are set to 1.0.
The design variables are the horizontal and vertical
displacements of the trailing edge of the flap, as indi-
cated in Fig. 1. The gap and overlap limits are set to
±0.5%c and ±1.0%c, respectively, based on the initial
configuration. The weight associated with the gap and
overlap constraints is set to 0.05.

Table 2 and Fig. 5 summarize the results. Within a
few flowfield and gradient evaluations, the flap reaches
the maximum allowable overlap distance of approxi-
mately −4.3%c, at which point the overlap penalty
function becomes active. The optimization converges
to the design #1 configuration, shown in Fig. 5. A new
grid is generated for this configuration and the corre-
sponding values of CL and CD are given in Table 2.
The optimization is restarted from the new grid with
the same objective function. This procedure is contin-
ued until convergence to the final design is obtained
(see Fig. 5), where the gap and overlap constraints are
no longer active. Note that the drag objective is satis-
fied for all the designs. Consequently, the optimization
is purely attempting to maximize the lift coefficient.
Overall, a 1.4% increase in the value of the lift coef-
ficient is obtained. This is achieved by an increased
loading on the main element as well as the flap, as
shown in Fig. 6.

Example convergence histories for the design #2 and

Table 2 Gap-overlap optimization summary

Design CL CD Ga Ob

NLR 7301 2.145 0.04720 2.40 -5.31
#1 2.165 0.04687 1.99 -4.28
#2 2.173 0.04677 1.95 -3.30

Final 2.175 0.04675 2.02 -2.68
Target 2.180 ≤ 0.0472

a Gap (%c)
b Overlap (%c)
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final configurations are shown in Fig. 7. The oscilla-
tions in the L2 norm of the gradient for design #2 are
due to the presence of the gap and overlap constraints.
The norm of the gradient is reduced by several orders
of magnitude, which indicates that the optimization
converged to a local minimum.

Given that the target value of the lift coefficient is
not achieved at the final design configuration (see Ta-
ble 2), it is somewhat surprising that further design
improvements cannot be realized by further extending
the effective chord of the configuration. The conver-
gence of the gradient in Fig. 7 indicates that a local
optimum has been found, but a global optimum is not
guaranteed. In order to verify the uniqueness of the
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Flow Solves and Gradient Evaluations
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optimal solution, the optimization is restarted from a
different initial condition. The flap is re-positioned to
a gap of 2.9%c and an overlap of −0.5%c, i.e., the lead-
ing edge of the flap is almost aligned with the trailing
edge of the main element. Fig. 8 shows that the opti-
mization converges to the same optimum solution. The
data labeled ‘G24-O53’ show the convergence to the
optimum solution from the original configuration, with
designs #1 and #2 indicated, while the data labeled
‘G29-O05’ show the convergence to the same optimum
solution from the new initial conditions.

Multi-Objective Optimization

The performance of the Newton–Krylov algorithm is
presented for the computation of a Pareto front that is
based on two competing objective functions. In par-

Fig. 9 B-spline control points and design variables
(shaded control points) for the NACA 0012 airfoil

Table 3 Thickness constraints

T. C. no. 1 2 3
Location (%c) 25.0 92.0 99.0
Thickness (%c) 11.8 0.9 0.2

ticular, we consider the design of an airfoil shape to
achieve specified lift and drag coefficients using the
following two objectives:

JL =
(

1− CL

C∗L

)2

(18)

JD =
(

1− CD

C∗D

)2

(19)

The target lift and drag coefficients are chosen such
that for a given set of design variables and constraints,
the two objectives cannot be satisfied simultaneously.
The objectives are competing, since a reduction in
drag will typically result in a reduction in lift due
to the decrease in the thickness and camber of the
airfoil. Consequently, this problem does not have a
unique solution. Instead, we seek to find a set of non-
inferior solutions (referred to as a Pareto front) where
an improvement in one of the objectives results in a
degradation of the other.

There are numerous techniques to solve multi-
objective problems.42,43 The technique used here is
the weighted-sum method. The vector of the objec-
tive functions is converted to a scalar by assigning a
weight to each objective and then forming a sum of the
objectives. The resulting objective function is similar
to Eq. 8 and is given by

J = ωL JL + (1− ωL)JD + ωT

Nc∑

j=1

Cj (20)

where ωT = 1.0.
The results are presented for the following transonic

design example. The freestream conditions are M∞=
0.7 and Re = 9×106. We specify a target lift coefficient
of 0.55 and a target drag coefficient of 0.0095. The
initial airfoil is the NACA 0012 airfoil. The airfoil
shape is described with 15 B-spline control points and
we use 10 control points as design variables, as shown
in Fig. 9. The angle of attack is also a design variable,
resulting in a total of 11 design variables. In addition,
we specify three thickness constraints as summarized
in Table 3.

The computed Pareto front is shown in Fig. 10,
where the trade-off between the competing objectives
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Fig. 10 Pareto front

Table 4 Aerodynamic coefficients for selected
Pareto optimal solutions

ωL CL CD α
0.9 0.5440 0.01204 0.264
0.7 0.5291 0.01187 0.222
0.5 0.5074 0.01169 0.167
0.3 0.4693 0.01145 0.0906
0.1 0.3681 0.01099 -0.0557

is clearly captured. The label “T.C.” denotes the
thickness-constraint penalty value. Also shown are two
sample airfoil shapes obtained at the end-points of the
front. Aerodynamic coefficients for a few selected so-
lutions are provided in Table 4.

In order to ensure that an optimum solution is at-
tained for each value of ωL, we require a reduction
of at least three orders of magnitude in the L2 norm
of the gradient. Example convergence histories are
shown in Fig. 11. The first optimum solution is ob-
tained for ωL = 0.9, which requires approximately
130 flowfield and gradient evaluations. The oscilla-
tions in the L2 norm of the gradient are mainly due
to the activation of thickness constraints during the
line-search procedure. The solutions for the remain-
ing values of ωL are computed in decreasing order
by warm-starting the optimization from the previous
solution. The warm-started solutions are typically ob-
tained in 65 to 90 flowfield and gradient evaluations,
as indicated in Fig. 11. An example convergence his-
tory of the objective function is shown in Fig. 12 for
ωL = 0.9. The values of the objective function are
plotted at the end of each search direction, i.e., when
the line-search exit criteria are satisfied. Note that
within 25 flowfield and gradient evaluations, the ob-
jective function is converged to engineering accuracy.

Since the Pareto front shown in Fig. 10 has been ob-
tained using a gradient-based method, the convergence
to a true, or global, Pareto front is not guaranteed. In

Flow Solves and Gradient Evaluations
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Fig. 11 Gradient convergence histories for selected
Pareto front solutions
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Fig. 12 Objective function convergence history for
ωL = 0.9

order to investigate whether a global front has been
captured, we solve this multi-objective problem using
a genetic algorithm developed by Holst and Pulliam.10

Note that the Newton–Krylov algorithm and the ge-
netic algorithm use identical spatial discretization of
the flow equations, objective functions and constraints,
as well as design variables.

The results are summarized in Fig. 13, where we
show the original, gradient-based, front labeled as
“Gradient”, and a front computed by the genetic algo-
rithm using a dominance-based approach,42 labeled as
“GA”. The dominance-based approach is specifically
designed to capture global Pareto fronts; however, its
computational cost is greater when compared to other
techniques. Using the genetic algorithm, the Pareto
front is obtained in 150 generations, which requires
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Fig. 13 Comparison of Pareto fronts obtained us-
ing the gradient and genetic algorithms

Fig. 14 B-spline control points and design vari-
ables (shaded control points) for the RAE 2822
airfoil

approximately 3000 flowfield evaluations. Overall, the
genetic algorithm results confirm that the gradient-
based front is a global Pareto front. Furthermore,
it is well known that genetic algorithms exhibit slow
convergence rates when close to an optimum solution.
This is indicated in Fig. 13, where slightly better re-
sults are obtained by the Newton–Krylov algorithm.

Multi-Point Optimization

In order to investigate the performance of the
Newton–Krylov algorithm for multi-point optimiza-
tion problems, the design of a low-drag airfoil for
transonic flight conditions at a specified lift coefficient
is considered. This example is based on one of the
cases studied by Drela.23 The objective function is
given by Eq. 4, where the target drag coefficient, C∗D,
is set to 0.013, the target lift coefficient, C∗L, is set to
0.733, and the Reynolds number is 2.88×106. The ini-
tial airfoil is the RAE 2822 airfoil. The airfoil shape
is described with 25 control points and we use 19 con-
trol points as design variables, as well as the angle of
attack. The B-spline control points together with the
active design variables are shown in Fig. 14. The val-
ues of ωL and ωD are set 1.0 and 0.1, respectively. In
addition, three airfoil thickness constraints are spec-
ified, as summarized in Table 5. The constraint at
35%c represents the initial airfoil thickness, while the
constraints near the trailing edge are used to prevent
airfoil surface cross-over. The value of ωT is set to 1.0.

T. C. no. 1 2 3
Location (%c) 35.0 96.0 99.0
Thickness (%c) 12.04 0.5 0.12

Table 5 Thickness constraints

First, we consider a single-point optimization prob-
lem for the design Mach number of 0.74. Fig. 15(a)
shows the initial and final pressure distributions and
the corresponding airfoil shapes. Fig. 15(b) shows the
values of the drag coefficient over a range of Mach
numbers for CL = 0.733. The drag coefficient is re-
duced by 36.4% at the design Mach number. The final
thickness at 35%c is 12.0%c, which is very close to the
desired thickness. However, for Mach numbers below
0.71 the optimized airfoil performs significantly worse
than the original airfoil.

Next, we consider a four-point optimization problem
where the design Mach numbers are 0.68, 0.71, 0.74
and 0.76. The weights assigned to each design Mach
number for the weighted-sum method, Eq. 5, are 1.0,
1.0, 2.0 and 3.0, respectively. Fig. 16(a) shows the
initial and final pressure distributions and the corre-
sponding airfoil shapes for the design point M = 0.74.
Fig. 16(b) shows the values of the drag coefficient over
a range of Mach numbers for CL = 0.733. When com-
pared with the initial RAE 2822 airfoil, the new design
achieves significantly lower drag values for Mach num-
bers above 0.71. The drag-divergence Mach number is
increased by 7.0%. The drag coefficient is reduced by
33.8% at M = 0.74, which is only slightly less than the
reduction obtained for the single-point optimization
problem. Although the resulting airfoil is not suitable
for practical use, with judicious definition of objectives
and constraints for a specific application, the Newton–
Krylov algorithm can provide realistic designs.

Conclusions
A Newton–Krylov algorithm for the design of single-

and multi-element airfoil configurations has been pre-
sented. The accuracy of the objective function gra-
dient, based on the discrete-adjoint method, is excel-
lent. Furthermore, the gradient is obtained in approx-
imately one-fifth of the flow solve time. The design ex-
amples demonstrate that the new algorithm provides
an effective approach for aerodynamic design problems
with multiple objectives and operating points. Future
work should concentrate on more detailed comparisons
between the gradient-based and genetic algorithms for
complex multi-objective problems. In addition, the
capabilities of the new algorithm need to be investi-
gated for practical design problems with more complex
objectives and constraints (preferably defined by in-
dustry experts).
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